

C-ChangePHP
A web-based interface for controlling Clipsal’s C-Bus building

management and automation family of products

v2 - 2012

Greig Sheridan

https://greiginsydney.com

Sydney, Australia.

15th May 2012

http://www2.clipsal.com/cis/technical/product_groups/cbus
mailto:Gspam1@bimbonet.net

C-ChangePHP-readme.docx Page 2 of 36

1 Contents

1 Contents .. 2

2 Background ... 4

3 What is C-ChangePHP? ... 5

4 What’s new in this release? .. 5

4.1 Graphical view ... 6

4.2 Table View ... 7

5 Structure ... 8

6 Pre-requisites .. 10

6.1 Server-Side .. 10

6.2 Client-Side ... 10

7 Deployment & initial configuration .. 11

7.1 C-Gate ... 11

7.1.1 Add remote machine permission .. 11

7.1.2 Hard-code the Project name ... 11

7.2 WAMP ... 12

7.3 C-ChangePHP .. 15

8 Debugging – common faults and their fixes ... 17

8.1 “Internet Explorer cannot display the webpage” ... 17

8.2 “[C-Change PHP] Connect failed: Unable to open network connection” 19

8.3 “[C-Change PHP] Connect failed: Login failed” ... 19

8.4 “[C-ChangePHP] Command failed: C-Gate not sync'd to the network. Wait and repeat” ... 19

8.5 “Failed to open tagsfile <path>\<filename>.xml”... 19

8.6 “Failed to open comfortfile <path>\<filename>.xml” .. 19

8.7 “No tags file and no project. Check config.php” ... 20

8.8 None of the Group names shown in the Table View are familiar... 20

8.9 Changed or updated Groups still show their old names (1) ... 20

8.10 Changed or updated Groups still show their old names (2) ... 20

8.11 “Headers Already Sent” error ... 20

8.12 Browser (in)compatibility.. 21

9 Hooks and returns ... 22

9.1 Hooks .. 22

9.1.1 function read_tags() .. 22

C-ChangePHP-readme.docx Page 3 of 36

9.1.2 function read_bus($passed_command) ... 22

9.1.3 function send($msg) ... 23

9.2 Returns (Session variables) ... 24

9.2.1 $_SESSION["tag[$network][$AppNum][$group]"] ... 24

9.2.2 $status[$network][$AppNum][$group] .. 24

9.2.3 $Zones[($loop-1)] .. 24

10 A Tour of Index.PHP – what’s going on? ... 25

10.1 Initialisation ... 25

10.2 Was the Form Submitted? .. 25

10.2.1 If the form WAS submitted ... 26

10.2.2 If the form was NOT submitted .. 27

11 The Visual Aspects of Index.php in More Detail ... 29

11.1 DIVs ... 29

11.2 The Magical Moving Menu ... 30

11.3 It’s really just a giant, pictorial form! .. 31

11.4 Functions “display” & “buttons” ... 33

11.5 The JavaScript element ... 34

12 References .. 35

12.1 PHP website .. 35

12.2 The Missing Manual – CSS .. 35

12.3 The C-Gate documentation ... 35

13 Acknowledgements & Credits ... 35

14 Support.. 36

14.1 C-Bus forums ... 36

14.2 From the author .. 36

15 Software Licence ... 36

C-ChangePHP-readme.docx Page 4 of 36

2 Background

I was an early adopter of Clipsal’s C-Bus building automation system, adding a small installation to

our cosy circa-1917 semi back in 1999.

We started with a grand total of 4 or 5 devices. We took it with us when we moved into our current

home, and we now have more than 30 units across two networks, with a PAC, lots of dimmers,

relays, auxiliary inputs, analog outputs (for 0-10V dimming control of LEDs) and even a DMX

interface.

With so many individual Groups at our control, the number of outputs eventually exceeded the

number of switches, so an alternate means to control everything was required – and so the web

interface was born.

Clipsal does offer one or two products that permit some kind of web control, but they were either

too complex for me to code, too kludgy, or too expensive for a home environment like this.

So I trawled the web, found some bits and pieces that I liked, and wrote my own. (I’ve used code

from 2 sources in this project, and each is credited).

“C-ChangePHP” is far from perfect but it serves my purposes, and having run it successfully at home

for over a year I’ve decided to publish it as open-source.

There are 2 functional blocks to this distribution: the communications “engine” and the user

interface. The engine is intended to be a universal interface (a driver) between the user-layer

“presentation” code and the physical C-Bus network.

My focus here has been the engine, but I’ve provided 2 sample user interface pages to give examples

of what you can do.

I’m not a professional coder, so pro’s will find the code kludgy and poorly-structured. I’ve been

fortunate enough to receive some wonderful input from a friend for this “v2” release, and the CSS

has been comprehensively revamped. It now works with iOS5 and revises its layout for portrait and

landscape orientation on tablet devices.

After completing the steps in the Deployment & initial configuration section, you should have a fully-

functioning browser-based control of your C-Bus installation. The “Table View” will be 100% based

upon your installation (courtesy of its XML tags file), whilst the “Graphical View” will be somewhat

unpredictable due to the random selection of Groups that are hard-coded in this page – but that’s

easily tweaked.

I hope you enjoy C-ChangePHP, build upon it and choose to publish your improvements.

Greig Sheridan

Sydney, Australia

May 2012.

http://en.wikipedia.org/wiki/Device_driver

C-ChangePHP-readme.docx Page 5 of 36

3 What is C-ChangePHP?

C-ChangePHP is presented as a sample website that provides a 2-way browser-based interface to a

C-Bus installation.

Files included in the distribution provide the communications engine to interface to the C-Bus

network, as well as two example PHP files & supporting images that demonstrate the functionality

delivered to the user.

Those familiar with PHP and HTML will be easily able to customise or completely replace the user

interface with one more suited to their installation, perhaps retaining only the communications

engine.

Those with limited programming experience can simply customise the provided examples for fully-

functional control of their own C-Bus installation.

The two working pages provided in this distribution are a “graphical view” and a “table view”. Click

on each of the images that follow to be taken to a fully working demo of C-ChangePHP.

4 What’s new in this release?

When I upgraded the iPhone to iOS5, the previous version broke a little. The buttons on the RHS of

index.php disappeared if you zoomed in on the iPhone or iPad. Clearly something in my code wasn’t

quite right, and thanks to the usual browser inconsistencies, I’d gotten away with it in the past, but

not now.

I am indebted to Jon the amazing code-smith for this major re-work, with much of the formatting

neatened and moved to the style sheet:

 Now automatically rearranges the layout to maximise screen efficiency on tablet devices

(tested on iPhone and iPad) in both portrait and landscape mode

 Changed “hot-spot” code that makes it more efficient and MUCH easier to customise

 New dark theme (easily enough reverted in the CSS if you dislike)

C-ChangePHP-readme.docx Page 6 of 36

4.1 Graphical view
The “graphical view” presents to the user a line-art drawing of the building with a simple HTML table

normally layered invisibly over the top. I’ve deliberately left the room outlines coloured in this

distribution so you can see how the hot-spots are defined on the page, but you’d normally disable

those. Clicking on any of the ‘rooms’ pre-selects the room, then you click on the action required in

the menu on the right: on, off, or ramp.

The room definitions (borders) are now set once in the style sheet, whereas the first version

required them separately defined in the page as well.

One of two lamp icons is overlayed on each room to indicate when the light/Group is on. The lamp

appears as fully yellow when the channel is at 255 (maximum), or a faded yellow if the channel is

less than 255 and greater than 0. The shading of the room also varies depending upon the intensity,

although there remain only 2 shades: “dim” and “on” (full).

There are several utility buttons along the top. In my real-world application I’ve coded some of these

as “read-only” and they show things such as when the building thinks it’s dark, or other such events.

The coloured dot is red for off, green for on, or orange for dimmed (anywhere from 1 to 254).

In this distribution, the Graphical View has a button to toggle between itself and the Table View

(with both coded into the same page). The Table View described below (visibly identical) is

presented in this distribution as a stand-alone file, so there’s no button to switch to the Graphical

View.

C-ChangePHP-readme.docx Page 7 of 36

4.2 Table View
The Table View simply reads all of the available Groups from C-Bus, then looks up the C-Gate Tags

file and presents each Group to you in the table. As with the graphical version, you simply choose

one or more Groups, then select the action.

Table.php builds a table based upon your Tags file, so it works out of the box without any need for

customisation. All you need to do is edit config.php with your site-specific settings and you’re up and

running.

C-ChangePHP-readme.docx Page 8 of 36

5 Structure

The code described here is written in PHP, served from a standard web-server. I use WAMP running

on a virtual 32-bit Windows7 machine under Hyper-V. When you send commands to, or query, the

C-Bus, it opens a Telnet session to the C-Gate application (which must be running on a machine

somewhere), squirts the appropriate commands and feeds the response back to the user.

The basic network architecture looks something like this:

When the user types a URL into their browser (or refreshes an existing page), the page load process

commences. Before the user sees any response, C-ChangePHP will open a Telnet session to C-Gate

and read the status of the bus. It will then build and push a web-page to the user that shows the

status of the C-Bus network at that moment.

When the user makes a selection and presses an action button (On, Off or Ramp), the relevant

commands are sent individually to the bus, and then the page load process is repeated with the

updated group status being read.

Note that one weakness of this structure is that a Group in the process of Ramping to a new value

will report its value at the instant the status is read and not the end value it is ramping towards.

PHP/
HTML

C-BusEthernet
network

CNI

WAMP
SERVER

C-GATE

User

Dimmer

Telnet

http://www.wampserver.com/en/

C-ChangePHP-readme.docx Page 9 of 36

Clicking the “redraw” button will re-initiate the page load process, updating the values of all Groups

without making any change.

At the end of each page is an HTML redirect, which is actually the mechanism by which the page

reloads the new values from the bus:

 // Now redirect back to itself:

 $self = $_SERVER['SCRIPT_NAME'];

 header("Location: $self?ramp=" . $ramp . "&level=" . $level);

This code also ensures that the page doesn’t accidentally re-send a previous change to the Bus if the

browser page is refreshed (“F5”) or by using the browser’s Forward or Back arrows.

Due to the static nature of PHP code, a fresh connection is made to the Bus with each status query

or change transmitted, then released. The Bus initialisation process is sped by hard-coding the

Project name into the “C-GateConfig.txt” file.

C-ChangePHP-readme.docx Page 10 of 36

6 Pre-requisites

6.1 Server-Side
1 A working C-Bus installation is a must! :-)

2 It must also have some means of programming it, so this will be one of the following:

 USB PC Interface 5500PCU

 RS-232 PC Interface 5500PC

 Network Interface 5500CN

 Pascal Automation Controller 5500PACA

 Legacy first-generation PC interface 5100PC

(Not that this project has currently only been tested with a 5500CN / CNI as the

interface).

3 A PC on the network (which can be the same one hosting the website) must have C-Gate

installed and running permanently. (C-Gate is normally installed with the C-Bus Toolkit).

4 If WAMP and C-ChangePHP are installed on a different machine to C-Gate, the C-Gate ini

file must be edited to permit connections from the WAMP machine.

5 A PC on the network to host the WAMP web-server. This need not be the same as the C-

Gate machine, but as both need to be running it might make sense to host them

together.

6.2 Client-Side
The Graphical View requires Java scripting be enabled for the rooms and buttons to be selected.

If the user has Java scripting disabled in their browser the page will not work, although will present

an error message to indicate this requirement is not met. Simply add an exception for this page/site.

C-ChangePHP-readme.docx Page 11 of 36

7 Deployment & initial configuration

7.1 C-Gate
Install C-Gate and/or C-Bus Toolkit and follow the default prompts. As you’re presumably adding C-

ChangePHP to an existing C-Bus installation, this step has probably already been completed.

7.1.1 Add remote machine permission

If WAMP and C-Gate are on different machines, C-Gate needs an entry added to its “access.txt” file,

usually located in the C:\Clipsal\C-Gate2\config folder. The syntax of the entry required is:

 remote <WAMP PC’s IP address> Program

If C-Gate is already running you’ll need to exit and re-launch it to read this new value.

7.1.2 Hard-code the Project name

The Project name needs to be hard-coded into C-Gate’s INI file. This is done to reduce some of the

initialisation overhead of each communications session. As a bonus, you’ll find Toolkit opens faster

and automatically starts the network as a result.

In C:\Clipsal\C-Gate2\config\, open “C-GateConfig.txt” in a text editor. Search for the following two

entries and change them to reflect the name of your project. (Mine is “19P” as shown below). Out of

the box in a default C-Gate installation there is no text after the equals sign.

project.default:

Name of the default project

Default Value:

Scope: global

Effective on: restart

project.default=19P

project.start:

Space-separated list of projects to start on server startup

Default Value:

Scope: global

Effective on: restart

project.start=19P

If C-Gate is already running you’ll need to exit and re-launch it to read these changes.

- End of this section -

C-ChangePHP-readme.docx Page 12 of 36

7.2 WAMP
Download WAMP and run the install file. At the time of writing this was called

“WampServer2.0i.exe”. Click Next through the installer and accept the GNU licence.

This document assumes you have accepted the default installation folder of c:\wamp.

On the “Select Additional Tasks” dialog, customise the options as you see fit. I leave them off to

reduce desktop clutter.

When the “Please choose your default browser” dialog opens, just click Open, as prompted, or

navigate to the location of your preferred browser.

When the “PHP mail parameters” dialog opens, just click Next.

When the installation has completed, leave “Launch WampServer 2 now” selected and click Finish.

http://www.wampserver.com/en/

C-ChangePHP-readme.docx Page 13 of 36

The WAMP icon should appear in the machine’s tray. It’s the left-most icon below:

If you hover over it, the pop-up will tell you WAMP is offline. Left-click on the icon and then select

“Put Online” at the very bottom:

If you now hover it should say WAMP is online:

C-ChangePHP-readme.docx Page 14 of 36

Now test that WAMP has access to port 80. Left-click on the WAMP icon in the tray, then select

Apache / Service and Test Port 80:

You should see this screen:

If the screen above instead says “might be Skype”, refer to the fix for this in the debugging section.

There are no other changes or tweaks that need to be made to the standard WAMP installation.

- End of this section -

C-ChangePHP-readme.docx Page 15 of 36

7.3 C-ChangePHP
Copy all of the C-ChangePHP files into the C:\wamp\www directory. You should end up with a

structure that looks like this:

The “wamp\www” directory is the “root” directory for the files being served by the machine. To get

to these files, simply open your browser and type the machine’s name and then the name of the

index or table file. If the above doesn’t work, try the machine’s IP address. If you’re on a domain,

you might need to use the FQDN of the machine instead.

 wampmachinename/index.php

 192.168.1.1/index.php

 wampmachinename.yourdomain.com/index.php

The distribution of C-ChangePHP ships with demo mode enabled. This will greatly improve the

chances of the default pages delivering a result “out of the box”.

Open config.php with a text editor and make the following changes:

 Update the value for “$demo = 1;” if you’re ready to talk to your network. Change it to a

0 to operate through C-Gate, or otherwise, leave it as a 1. Don’t forget the “;” at the end of

the line.

 Update the value for $cgate = "";

If C-Gate is running on a different PC, place its name or IP address inside the quotation

marks. Otherwise, leave the value empty and the code will assume C-Gate is running on the

localhost.

 Add the name of your C-Bus “Project” - the top level node in Toolbox. If it’s left blank we'll

assume the Project Name is the same as the filename of the tags file (which it usually is).

// e.g. $project = "19P";

$project = "";

C-ChangePHP-readme.docx Page 16 of 36

 Add the number of the C-Bus Network. This number is used in some code pages to pad out

an ambiguous request to the full “<project>/<network>/<application>/<group>” command.

(The default value for networks is 254 - most installations won't need to change this).

// e.g. $network = "254";

$network = "254";

 Update the value for “$tagsfile =”. Revise the value here to be the path and file of

your C-Gate tags file. Note the double back-slashes in the folder structure and don’t forget

the “;” at the end of the line. The tables won’t draw if this is not set.

//e.g. $tagsfile = "C:\\Clipsal\\C-Gate2\\tag\\19P.xml";

$tagsfile = "C:\\Clipsal\\C-Gate2\\tag\\19P.xml";

 Update the value for “$comfortfile =”. If a “Comfort” Alarm Panel is attached to C-bus

it can be used to populate the Zone Names until Comfort supports the 'Zone Name Query'

command. If you have no Comfort, just leave this entry as an empty string (""). Note the

double back-slashes in the folder structure and don’t forget the “;” at the end of the line.

//e.g. $comfortfile = "C:\\Comfort\\ComfortFile.cclx";

$comfortfile = "";

- End of this section -

C-ChangePHP-readme.docx Page 17 of 36

8 Debugging – common faults and their fixes

8.1 “Internet Explorer cannot display the webpage”
WAMP isn’t running or Port 80 (or the web-server itself) is not accessible. Possible causes are:

 Check you have the right IP address or domain name for the web-server.

 Does the url have the correct path to the PHP file?

 Is there any firewall, router or other device that is blocking your access to the web-server?

(Try pinging it).

 The WAMP service isn’t started on the web-server. Check in the PC’s system tray to check

WAMP’s status is good. (The left-most icon is WAMP and should be white with the needle at

3 o’clock as per the below. Red or yellow visible in the icon, and the needle at any other

position isn’t good):

Start WAMP if it’s not running by clicking Start / All Programs / WampServer / start

WampServer.

 Installing Skype will break WAMP. This can be confirmed by running a test of Port 80 from

WAMP. Left-click on the WAMP icon in the tray, then select Apache / Service and Test Port

80:

C-ChangePHP-readme.docx Page 18 of 36

To fix this, launch Skype, then select Tools / Options / Advanced / Connection and de-select

“Use port 80…” as per the screen-capture below. (Accurate as at April 2011 and Skype

version 4.2.0.187).

Exit and re-launch Skype for this change to take effect. Make sure you close the program

completely before re-launching it – make sure the green Skype “tick” icon isn’t still present

in the tray – otherwise you’re only re-opening the user interface. Repeat the “Test Port 80”

process to confirm it now reports success:

C-ChangePHP-readme.docx Page 19 of 36

8.2 “[C-Change PHP] Connect failed: Unable to open network connection”
C-ChangePHP was not able to contact C-Gate. Possible causes are:

 The C-Gate application is not running. Check and restart it if required.

 The C-ChangePHP config has not been correctly set following installation. Check config.php.

8.3 “[C-Change PHP] Connect failed: Login failed”
C-Gate rejected the connection attempt from C-ChangePHP. This happens when WAMP and C-Gate

are on different machines.

C-Gate needs an entry added to its “access.txt” file, usually located in the C:\Clipsal\C-Gate2\config

folder. The syntax of the entry required is:

 remote <WAMP PC’s ip address> Program

If C-Gate is already running you’ll need to exit and re-launch it to read this new value.

8.4 “[C-ChangePHP] Command failed: C-Gate not sync'd to the network.

Wait and repeat”
This one appears after C-Gate has been started but has not finished synchronising to the network.
Wait a minute or two and it should be fine. Reading the bus should be OK during this process, but
the value of Groups not yet synchronised will show on the table view as a “-“, and on the pictorial
view as “off”.

If further debugging is warranted, Telnet to the C-Gate server on port 20023 and check its status
with the command:

get //<Project Name>/<Network>

e.g. get //19P/254.

The response will indicate if the network is ready to accept user input or not. The network needs to
be in the 'ok' state to be fully functional.

 get //19P/254 state

 300 //19P/254: state=sync

 get //19P/254 state

 300 //19P/254: state=ok.

8.5 “Failed to open tagsfile <path>\<filename>.xml”
Pretty self-explanatory.

 Is the tag file value in config.php set correctly?

 Are there double-backslashes between directories? E.g. C:\\Clipsal\\C-Gate\\etc…

8.6 “Failed to open comfortfile <path>\<filename>.xml”
Pretty self-explanatory.

 Is the comfort file value in config.php set correctly?

 Are there double-backslashes between directories? E.g. C:\\Clipsal\\C-Gate\\etc…

C-ChangePHP-readme.docx Page 20 of 36

8.7 “No tags file and no project. Check config.php”
Have the installation-specific values for the Tags file and Project been entered into config.php?

8.8 None of the Group names shown in the Table View are familiar
It’s possible that you’ve accidentally chosen one of the demo tag files from the \C-gate\tags\ folder,

or not set the tags file in config.php. (If no tags file is provided in config.php, we’ll use the Clipsal

demo file home.xml instead).

8.9 Changed or updated Groups still show their old names (1)
C-ChangePHP reads the Tags XML file when the page is first loaded and saves this information into

session memory. If you add new Groups (e.g. through Toolkit) or rename existing ones, these

changes won’t automatically be found.

To test for this, exit and re-launch your browser. If this is not preferred, there are 2 work-arounds:

 Reload the page and add “&gettags” (without the quotes) to the end of the URL. This forces

a manual reload of the tag file and other configuration information.

 Hard-code a button into the page to force a manual reload of the tags file.

8.10 Changed or updated Groups still show their old names (2)
Is it possible C-ChangePHP is referencing an obsolete version of the Tags XML file? Did you copy the

file across to the WAMP server and it’s not referencing the active XML file? Might you (or someone

else) have made any changes to the C-Bus config using a different installation of Toolkit and a

different C-Gate server?

If it’s correctly referencing the right Tags file, exit and re-launch your browser. If this is not preferred,

there are 2 work-arounds:

 Reload the page and add “&gettags” (without the quotes) to the end of the URL. This forces

a manual reload of the tag file and other configuration information.

 Hard-code a button into the page to force a manual reload of the tags file.

8.11 “Headers Already Sent” error
If your browser outputs an error message like the sample below, it’s indicating a PHP config switch

needs to be changed:

Warning: session_start() [function.session-start]: Cannot

send session cache limiter - headers already sent (output

started at /…/c-bus_common.php:407) in /… /index.php on

line 11

Find the PHP.INI file and change “output buffering” to ON:

output_buffering = On

C-ChangePHP-readme.docx Page 21 of 36

8.12 Browser (in)compatibility
A reasonable amount of effort has been expended in trying to get the site to render correctly for the

usual browsers. It has been tested against and presents consistently with the following browser

versions:

Android Internet Browser 2.2

Internet Explorer 8, 9

Firefox 3.6.9

Google Chrome 10.0.648.151

Google Chrome 10.0.648.204

Google Chrome 11.0.696.65

Google Chrome 18.0.1025.168 m

iPhone 3GS / Safari 4.x

iPhone 4S 5.1

iPad “2” 5.1

C-ChangePHP-readme.docx Page 22 of 36

9 Hooks and returns

Communication between the user-layer application and C-Bus takes place by calling certain

procedures/functions, and responses are either returned directly to the calling code, or created as

session variables for the calling code to reference.

The hooks (calls) and returns are described in this chapter.

If you’re writing your own user-layer page (to replace the provided table.php or index.php), these

are the only calls and returns you need to send data to and read data from the C-Bus and the XML

and Comfort files.

9.1 Hooks
There are only three procedures that the user-layer application calls.

9.1.1 function read_tags()

“Read_tags” must be called when the user first loads the page.

It is passed no arguments, and performs the following steps:

1. Checks if the variable $project is set, and if not, sets it as an empty string.

2. Checks if the variable $network is set, and if not, sets it as the usual default value (254).

3. Checks if the variable $tagsfile is set. If not, it forces it to “home.xml”, the demo tag file

usually installed with C-Gate.

4. If the tags file exists, it opens it and reads all of the Networks, Applications & Group names

into session memory. If an empty Application is read, it will be discarded and not written to

memory.

Non-fatal errors are written to the screen and the procedure continues, whilst fatal ones are written

to the screen and the page stops executing.

9.1.2 function read_bus($passed_command)

“Read_bus” queries the C-Bus network and populates the appropriate session variables in memory.

“Read_bus” accepts a vast range of potential inputs:

 If an empty string (e.g. "") is passed, func read_bus will query *ALL* networks and apps from

the tags.XML file. (It will skip any that are determined to be empty)

 If only an App (e.g. "56") is specified, func read_bus will pad with <Project> and <Network>

from config.php

 If Network and App (e.g. "254/56") are specified, func read_bus will pad with <Project> from

config.php

 If Project, Net and App (e.g. "19P/254/56") are specified, func read_bus will not pad

 If an entire command string is specified (e.g. "get 19P/254/56/* level"), func read_bus will

transmit it verbatim

C-ChangePHP-readme.docx Page 23 of 36

Multiple commands (e.g. "56,254/202,get 19P/254/56/* level") can be passed to read_bus, each

separated by a comma. The padding rules from the above bullet-points will be applied to each

separate command in the string in turn.

They will be transmitted to the bus within the same Telnet session, but treated individually and

subject to the formatting as outlined above.

“read_bus” is really only a formatting stage – it sends its output direct to “send”.

9.1.3 function send($msg)

“send” is called to transmit a change or query to the bus.

Unlike “read_bus”, “send” must be passed a correctly-formed, self-contained command to transmit.

Examples of correctly formatted commands to send are:

 "TRIGGER EVENT //19P/254/202/34 255”

 "ENABLE SET //19P/254/203/34 255”

 "RAMP //19P/254/56/34 255 20”

Multiple commands can be concatenated together, separated by a comma, and will be transmitted

to the bus independently of each other from within the same Telnet session. It’s acknowledged that

long sequences of multiple commands are likely to impede the efficiency of the C-Bus network, so

should be avoided where possible.

“send” returns “OK” if successful. Any other response is considered fatal and in the example files,

fatal messages are written to the screen and the page stops executing.

C-ChangePHP-readme.docx Page 24 of 36

9.2 Returns (Session variables)
When “read_tags” and “send” execute, they create and/or populate various session or global

variables.

Fixed values (e.g. Application numbers & names, Group names) are stored in Session variables.

These are held in the browser’s memory until destroyed by code command, or the session ends (by

the user closing the browser window).

9.2.1 $_SESSION["tag[$network][$AppNum][$group]"]

The name of the Group in the $network and $AppNum, as read from the tagsfile.

9.2.2 $status[$network][$AppNum][$group]

“status” is not a session but a global variable. Its value is only useful at the moment the bus is

queried, so there’s no point storing it for later.

Status reports a value from 0-255 that is the level of the Group identified by the $network and

$AppNum values.

9.2.3 $Zones[($loop-1)]

If a “Comfort” alarm system exists in your deployment and the $comfortfile value is provided,

“$Zones[$Group]” contains the names assigned to the Comfort Alarm system zones. These align 1:1

with the Groups in Application 1.

C-ChangePHP-readme.docx Page 25 of 36

10 A Tour of Index.PHP – what’s going on?

There are 2 ways any web-page can be called. The first is as a result of the page being called

manually by the user typing the URL or clicking on a link (with or without any extra parameters

passed from the URL) and the second is as a result of a form on the page having been submitted.

These use the “GET” and “POST” methods respectively.

I’m using both in the same page, so we need to determine what’s going on and take the appropriate

action.

At its most rudimentary, both index.php and table.php are structurally identical. Both are simply an

HTML form, with the room (Group) selection being performed by ticking and clearing checkboxes on

the form. This is described in more detail in this and the following chapter.

The high-level flow of the page is thus:

10.1 Initialisation
First off (from the <body> tag) we initialise the page and check if the “_SESSION” variables exist.

These variables include parameters read from the config.php file and also the names for all of the

Groups (as read from the tags XML file, identified in config.php).

If these variables aren’t present, we call read_tags() – located in c-bus_common.php – to check and

populate them. (Exiting and re-launching your browser will automatically discard and refresh these

values. Closing and re-launching a tab won’t).

If parameters were passed from the URL (including “level”, “ramp” and “page”) we declare and

format the appropriate variables before proceeding.

10.2 Was the Form Submitted?
After the initialisation is complete, the page tests to see if the form on the page was responded to by

the user selecting any of the actions: Redraw, change page, On, Off or Ramp.

If the user pressed the “Table View” / “Graphical View” button (which changes its label depending

upon which “page” you’re on), the page will re-call itself, but instead of “POST”-ing the value it will

instead request the new page as part of the URL (“&page=0” / “&page=1”).

if(isset($_POST["page"])) {

 // Now redirect back to itself:

 $self = $_SERVER['SCRIPT_NAME'];

 if ($page == 1) {

 header("Location: $self?ramp=" . $ramp . "&level=" .

$level . "&page=0");

 } else {

 header("Location: $self?ramp=" . $ramp . "&level=" .

$level . "&page=1");

 }

}

C-ChangePHP-readme.docx Page 26 of 36

The next line starts an “IF” statement block that decides the flow of the remainder of the code on

the page. If “state” is set (the form was submitted), run the next section:

if(isset($_POST["state"])){

10.2.1 If the form WAS submitted

This load of the page won’t write anything to the screen: it will determine the action required,

initiate that action, and end. Its last action is to re-call itself for a clean load of the page – but that’s

covered in If the form was NOT submitted.

Having submitted the form (and we’ve already addressed the “change page” button) then the only

remaining actions are On, Off and Ramp – and so this load of the page is intended to transmit a

change to the bus.

The next code sections determine the button that was pressed, what Groups / rooms / buttons were

selected, and if any of the other parameters were entered or are applicable:

 The dim percentage

 a “specify” value

 The ramp time

All of the checkboxes on the form belong to an array called “channel[]”, and when checked, the

value placed into the array corresponds to an Application and Group number:

<p><input type="checkbox" name="channel[]" value="56/33"

 id="select_33">Group33</p>

After the dim/specify and ramp values are determined and the action to be taken is known, we run

through the array and extract all of the checkboxes that were selected:

$each_ch = strtok ($channel, ",");

while ($each_ch !== false) {

 $transmit = $transmit . "ramp //" . $project . "/" . $network .

 "/" . $each_ch . " " . $binary . " " . $tx_ramp . ",";

 } // Note that this code example is edited for clarity. App tests are not shown.
 $each_ch = strtok (",");

This process (slightly condensed above) loops through all of the $channels (checkboxes), and for

those “not false”, their value is added into the “$transmit” string.

C-ChangePHP-readme.docx Page 27 of 36

“transmit = $transmit .” builds a comma-separated list of the commands to be sent. At the

conclusion of this while loop, we have a command string that we then send to the bus:

if ($transmit == ""){

 // Do nothing - no command selected (probably “Redraw”)

} else {

 $retval = send($transmit);

 if ((strpos($retval, 'OK') === false)) {

 echo ("

ERROR. Return value = " . $retval . "
");

 die;

}

}

… and the page recalls itself from the top:

// Now redirect back to itself:

$self = $_SERVER['SCRIPT_NAME'];

header("Location: $self?ramp=" . $ramp . "&level=" . $level .

"&page=" . $page);

From here, the flow of the page is back to Initialisation, and it will read an updated status from the

bus and re-draw the screen with the change. Note that one weakness of this structure is that a

Group in the process of Ramping to a new value will report its value at the instant the status is read

and not the end value it is ramping towards.

10.2.2 If the form was NOT submitted
} else {

"state" was NOT set. The user did NOT submit the form to get to this point. This section runs when

the page was loaded 'cleanly', from either a browser Refresh (“F5”), anew (a fresh visit by the user),

or a redirect after a change was made.

It queries C-Bus, draws the resulting table to the page, then ends, waiting for the user to press a

button.

read_bus("56");

This returns after having read from C-Bus with all of the Group values ready for the code below to

format and display. “read_bus” accepts a vast range of potential inputs:

 If an empty string (e.g. "") is passed, func read_bus will query *ALL* networks and apps from

the tags.XML file. (It will skip any that are determined to be empty)

 If only an App (e.g. "56") is specified, func read_bus will pad with <Project> and <Network>

from config.php

 If Network and App (e.g. "254/56") are specified, func read_bus will pad with <Project> from

config.php

 If Project, Net and App (e.g. "19P/254/56") are specified, func read_bus will not pad

C-ChangePHP-readme.docx Page 28 of 36

In the example files provided we only query Application 56 (Lighting).

?>
<div id="container">

At this point we drop out of PHP back to HTML (that’s the “?>”) and simply draw the page on-screen.

The first element to place on the screen is the division called “container”. Divisions and the screen-

layout are discussed in the next chapter.

We briefly jump back into and out of PHP in some of the commands. In the drop-down lists for

“level” and “ramp” in the menu we pre-select the last-used values, making them ‘sticky’ between

page-draws. If the page is drawn fresh, the initialisation code has already set a default of 60% and 4s

for these values.

<option value="60" <?php if ($level == "60") {echo "selected";}?> >60%</option>

<option value="8" <?php if ($ramp == "8") {echo "selected";}?> >8 s</option>

So if $ramp=”8”, the HTML for this option has “selected” added to the code sent to the browser.

Once the page has been drawn to screen the code stops, waiting for the user to select some options

and press a button. When that happens, the entire process starts from the Initialisation.

C-ChangePHP-readme.docx Page 29 of 36

11 The Visual Aspects of Index.php in More Detail

If you’re not familiar with PHP or HTML, this section will provide some tips on just what the default

index.php file is doing and how it can be customised to your installation.

11.1 DIVs
The page is physically drawn on the screen as a number of HTML “divisions”. You’ll find them in the

code with the <div id= “name”> and </div> tags. The closing tags are often some distance from the

opening, but I’ve commented each </div> so you know what it’s closing.

You can see from the drawing that all of the divs are nested inside others. Some (the rooms and

buttons) are placed by the CSS through the functions “display” and “buttons”.

The size and placement of each of the div’s on the page is ruled by the CSS file, and through the

magic of CSS it all aligns as the browser’s size changes.

Here in the CSS is where you define the hot-spots for the rooms:

#UpstairsL {

 top: 29.5%;

 left: 10%;

 width: 35%;

 height: 28%;

 border: 4px solid red;

}

C-ChangePHP-readme.docx Page 30 of 36

#UpstairsR {

 top: 29.5%;

 left: 49.5%;

 width: 39%;

 height: 27.5%;

 border: 4px solid aqua;

}

#DownstairsL {

 top: 63%;

 left: 10%;

 width: 29%;

 height: 28%;

 border: 4px solid lime;

}

I’ve left borders enabled in a range of colours to help you identify which div is where on the screen.

Once you’re happy with the design and layout, just turn the relevant borders off by editing the CSS:

border: none;

11.2 The Magical Moving Menu
Note that the menu code appears in the CSS in multiple places. This is where it is set to appear in

different places and formats depending upon the size of the screen. This is where you can further

tweak it for a given display.

/* iPhone */

@media only screen and (min-device-width: 320px) and (max-device-

width: 480px) {

 #maincontent {

 display: block;

 }

 #menu {

 width: 100%;

 clear: both;

 display: block;

 }

C-ChangePHP-readme.docx Page 31 of 36

11.3 It’s really just a giant, pictorial form!
The collection of divs became necessary to turn what is really just a giant HTML form into the end

result.

Under the skin, each “room” or button (horizontally across the top of the screen) is actually just a

check-box on a form, hidden from the user.

<div style="display:none">

<p><input type="checkbox" name="channel[]" value="56/33"

 id="select_33">Group33</p>

<!-- Not selectable: -->

 <p><input type="checkbox" name="channel[]" value="56/20"

 id="select_20" disabled>Group20</p>

</div> <!-- Invisible section of the menu -->

The form’s “Submit” buttons are in the Menu div.

Because the check-boxes aren’t visible (style="display:none")we need another means to

access them, and this is the job of the JavaScript, described shortly.

As an experiment, delete the “display:none” and see what happens on-screen.

All of the following code in this chapter was required to:

 lay out the hot-spots that functionally align with the check-boxes

 “check” and “uncheck” the boxes ready for when the form is submitted

 add and remove the ‘tick’ to show the box had been selected or not; and

 then display an icon to show the status of each Group.

In comparison, the raw “table” code that’s inbuilt into the same page delivers exactly the same

functionality at a fraction of the effort.

Review the code in between <div id="table_div"> and </div> <!-- table_div -->.

 //echo ("This is the table view");

 ?>

 <div id="table_div">

 <table border=1>

<see how little there really is in here. The ‘complex’ stuff in here is just

getting the tag names right. >
 </table>

 </div> <!-- table_div -->

It’s worth mentioning here that I incorrectly refer to a “Graphical Page” and a “Tabular Page”

repeatedly in the code and documentation. Both screens/views are presented to the user from

within this one PHP page, but appear to be totally different pages. The only thing that changes in the

url is the “&page=n”.

C-ChangePHP-readme.docx Page 32 of 36

If you happen to have a multi-story building, this is where (and how) you can revise the code to add

extra “pages” to select a different floor.

C-ChangePHP-readme.docx Page 33 of 36

11.4 Functions “display” & “buttons”
Functions “display” and “buttons” are called when the page is drawn, with “display” being called

once for each room and “buttons” for each of the buttons.

The parameters passed to the two functions are essentially the same: we pass the Network,

Application, Group, its name, and for buttons, a 0 or 1 to indicate if it’s read-only or changeable:

<div id="building">

<div id="image-container">

 <!-- SYNTAX display(Network, App, Group address, room name) -->

<?php display(254,56,33,"UpstairsL")?>

 <?php display(254,56,34,"DownstairsL")?>

 <?php display(254,56,49,"UpstairsR")?>

<?php display(254,56,35,"DownstairsR")?>

 </div> <!-- image-container -->

</div> <!-- building -->

The functions (in conjunction with the CSS and Javascript) place the clickable hot-spots in position on

the page and add the appropriate status icon.

So you can tell if a room’s Group is on, off or dimmed I added the light-globe icon. The globe is clear

if the Group is off (intensity=0/255), partially yellow if it’s dimmed (1-254) and fully yellow if it’s fully

on (intensity=255/255). Relays and other non-dimmable Groups only report values of 0 or 255. The

coloured dots perform the same purpose for the buttons.

I decided that these 3 status indicators were sufficient for the purposes of the index page, but you

can easily make this more granular by adding other tests of the intensity to “function display”

and “function buttons”, and to the CSS:

if ($status[$net][$app][$gp] < 1) {

// It's OFF

$lampBrightness = "off";

elseif (($status[$net][$app][$gp] > 1)

&& ($status[$net][$app][$gp] < 255)) {

//It's 'dimmed'

 $lampBrightness = "dim";

} else {

// It must be full on

$lampBrightness = "on";

}

Here is where you’ll need to add extra entries (and images!) for different levels

.toggle.on {

background-color: rgba(208,208,128,0.6);

background-image: url(lightbulb.png);

}

.toggle.dim {

 background-color: rgba(208,208,128,0.3);

 background-image: url(lightbulb.png);

}

To add extra granularity to the buttons, you’d repeat the same changes as above in function

buttons, and then add extra entries for the “statuslight” in the CSS.

C-ChangePHP-readme.docx Page 34 of 36

11.5 The JavaScript element

<script type="text/javascript">

// remap jQuery to $

(function($){})(window.jQuery);

function selectApp(targetRadio) {

// fake the toggling of checkboxes when clicking on status bar buttons or

shed map hotspots

 if($('#'+targetRadio).is(':checked')) {

 $('#'+targetRadio).prop('checked', false);

 } else {

 $('#'+targetRadio).prop('checked', true);

 }

 $(this).click(function(event) {

// event.preventDefault();

// prevent the default behaviour of clicking on the link (eg jumping to the

top of the page because the href is "#")

 });

}

/* trigger when page is ready */

$(document).ready(function (){

// your functions go here

 $("#status .statusbutton").toggle(// find all buttons on the status

bar and toggle the classes when clicked

 function() {

 $(this).addClass('checked');

 },

 function() {

 $(this).removeClass('checked');

 }

);

 $("#building .toggle").toggle(// find all hotspots on the shed map

and toggle the classes when clicked

 function() {

 $(this).addClass('checked');

 },

 function() {

 $(this).removeClass('checked');

 }

);

});

</script>

The JavaScript on the page exists for one purpose – to provide feedback to the user that they’ve

selected a “check-box” on the form. It does this by overlaying the “tick” graphic on top of the form.

Without this code (or with JavaScript disabled), there’d be no means to know which Groups / rooms

you’d selected prior to “submitting the form” with the appropriate On, Off or Ramp button.

C-ChangePHP-readme.docx Page 35 of 36

12 References

12.1 PHP website
I’ve leant heavily on the PHP website throughout the design process and I commend it to you

heartily if you’re wanting any help with the syntax of PHP and the commands available.

12.2 The Missing Manual – CSS
“The Missing Manual – CSS” helped me get the presentation side of the site to the sorry state it’s in.

It’s published by Pogue Press / O’Reilly, written by David Sawyer McFarland.

ISBN 978-0-596-52687-0. My copy cost me AU$75 from Dymocks.

12.3 The C-Gate documentation
It’s installed automatically when you install C-Gate. “CGateManual.pdf” lives in C:\Clipsal\C-Gate2\.

13 Acknowledgements & Credits
C-ChangePHP has been a great challenge and a great accomplishment. Along the way I’ve

encountered a few people who’ve helped and guided me:

Clipsal. For producing such a wonderfully flexible control system, and having the confidence to open

the control interface to third parties like me (and you!).

JellyTriangle. For the “ fantastic-graphical-checkboxes-using-css-and-javascript”. – This was used in

the original release, but is no longer present in this v2 release.

Antoine Roundy. For “PHP Telnet”. Without this I’d be nowhere.

Leichhardt Electrical Wholesalers. The best little toyshop in all of Leichhardt.

Ingo de Jager. My amazing beta-tester. The man who inspired me to evolve C-ChangePHP from only

controlling the Lighting Application, to making it the much more comprehensive control mechanism

you have today. And for adding almost 2 months to the Beta process with countless bug reports and

suggestions, resulting in many more late nights than I had ever intended.

Jon, Kelvin. PHP and CSS review and incredibly diplomatic critiques.

Larry, Gus. For their techy input.

Rocky. For putting up with my madness all these years.

http://au2.php.net/
http://blog.jellytriangle.com/2009/12/24/fantastic-graphical-checkboxes-using-css-and-javascript
http://www.geckotribe.com/php-telnet/

C-ChangePHP-readme.docx Page 36 of 36

14 Support

14.1 C-Bus forums
The C-Bus forums website is another great resource, full of really helpful people. There’s an entire

section devoted to C-Gate and Toolkit. They won’t necessarily be able to help with my code, but if

you’re tinkering with C-Gate you’ll find lots of useful info and knowledgeable contributors.

14.2 From the author
C-ChangePHP is supported on a best-endeavours basis by the author. Please contact me via my blog

at https://greiginsydney.com with as much information as you can.

To aid debugging, please leave an original copy of the C-ChangePHP files on your PC and revert to

these when-ever you’re experiencing problems. This may help determine if the errors are in the

communications engine or your presentation code.

15 Software Licence

C-ChangePHP is Copyright 2010, 2011, 2012 Greig Sheridan.

This file is part of C-ChangePHP.

C-ChangePHP is free software: you can redistribute it and/or modify it under the terms of the GNU

General Public License as published by the Free Software Foundation, either version 3 of the License,

or (at your option) any later version.

C-ChangePHP is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without

even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with C-ChangePHP. If not,

see http://www.gnu.org/licenses/.

- end of document -

http://www.cbusforums.com/forums/
https://greiginsydney.com/
http://www.gnu.org/licenses/

